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This paper presents analytical results for the temperature and pressure fluctuations
in a droplet or bubble pulsating in a sound wave, the related damping coefficients, as
well as the corresponding sound attenuation coefficients for dilute suspensions. The
study is limited to small-amplitude motions but includes the effects of compressibility
and heat conduction in the fluid outside the particle. Results are obtained for both
average and surface values of the particle’s temperature and pressure fluctuations
that are applicable to droplets in gases and liquids, and to gas bubbles in liquids.
In the latter instance, it is found that the bubble’s response exhibits a clear resonant
peak at the isothermal natural frequency, that acoustic radiation is the dominant
dissipation mechanism near resonance, and that the disturbances produced by the
bubble in the liquid significantly reduce the thermal damping at most frequencies.
Similar conclusions apply for droplets in liquids, except that the effects of resonance
are significantly diminished.

1. Introduction
It is well known that small gas bubbles in liquids can easily be made to oscillate

radially by small-amplitude sound waves. Such motions are important in a variety
of contexts, for example in the determination of bubble sizes in bubble clouds from
acoustic measurements (Medwin 1977), and in cavitation studies (Prosperetti 1986).
Although the response of droplets to sound waves is less spirited, they can also execute
radial oscillations, particularly in liquids. However, the literature on droplets in sound
waves is largely concerned with the attenuation of sound in emulsions resulting from
translational motions (see, for example, the extensive bibliography cited by Allegra
& Hawley 1972, and shorter, but more recent surveys given by McClements & Povey
1989, and by Fukumoto & Izuyama 1992). In the case of liquid-droplet aerosols, the
radial motions can be usually ignored because the droplet’s compressibility, being
much smaller that of the gas outside, makes them appear as rigid. But in the case of
droplets in liquids, the compressibilities are comparable so that it is likely that radial
motions are excited. These may produce additional energy losses, acoustic radiation for
example, but this does not seem to have been studied. In the case of gas bubbles, these
effects have been studied by many investigators, notably Prosperetti (see, for example,
Prosperetti 1977, 1986, 1991) who has calculated the thermal losses on the assumption
that the liquid temperature remains constant. One basis for this assumption is the
vast differences between the thermal properties of the gas and the liquid.

For droplets in liquids, on the other hand, the properties have comparable values,
making it necessary to retain the temperature fluctuation in the liquid. This is
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substantiated by an order of magnitude analysis. But, in addition, the same analysis
shows that even for gas bubbles in liquids it is not generally possible to neglect those
fluctuations.

For these reasons, we have studied the radial response of a small fluid sphere to a
sound wave in an otherwise unbounded fluid. The study includes only those aspects
of the problem that are essential to the problem at hand and neglects others that may
be important in some contexts, for example mass transfer (see, for example, Marble
1970; Cole & Dobbins 1970; Nigmatulin, Khabeev & Zuong Ngok Hai 1988, and
Gumerov, Ivanadev & Nigmatulin 1988). The analysis is similar to that of Epstein &
Carhart 1953, referred to as E & C hereafter), except that we consider only that part
of the incident wave that is uniform around the sphere, that is, the n = 0 mode in a
spherical-harmonic representation of a plane wave. The remaining modes are needed
to study other motions of the sphere, translational, for example. But in the linear
approximation these motions are decoupled so that they can be studied separately.

The theory is used to obtain explicit results for the pressure and temperature
fluctuations in the particle, and to compute energy dissipation rates due to acoustic
radiation and to thermal dissipation. These rates are used to study the attenuation of
sound in dilute suspensions, and the acoustic and thermal damping coefficients for a
gas bubble in a liquid. In the attenuation case, we compare our thermal attenuation
results to those of E & C, and find that disagreement exists. We show that the reason
for this is that the explicit formulas for thermal attenuation given by these and by
other investigators (e.g. Isakovich 1948: Allegra & Hawley 1972), do not take into
account the pressure disturbance in the liquid.

In the second application, damping of gas bubbles in liquids, we find that our
thermal damping is significantly different from that found in the literature. We ascribe
the differences to the temperature fluctuations in the liquid, and to the disturbance
pressure field produced by the pulsating particle.

2. Basic equations
2.1. Background motion

We wish to consider linear, forced pulsations that are produced by a plane, monochro-
matic sound wave, of circular frequency ω, propagating in a fluid of infinite extent.
In the absence of the particle (droplet or bubble), this wave can be treated as an ideal
acoustic wave; that is, as a wave that propagates without attenuation or dispersion.
We further assume that the wavelength is sufficiently long that the background field
can be considered uniform around the sphere. In the absence of the particle, the
pressure, temperature and density fluctuations can then be expressed as the real parts
of

P ′f = P ′f0e
−iωt, Θ ′f = Θ ′f0e

−iωt, ∆′f = ∆′f0e
−iωt, (2.1)

respectively, where P ′f0, Θ
′
f0 and ∆′f0 real. In view of the large number of symbols

used in this paper, a list is given in Appendix D. Since the field in the absence of the
particle is ideal, these fluctuations are related by the ideal acoustic equations. Thus,

P ′f = (ρf0cpf/βfT0)Θ
′
f = c2

sf∆
′
f, (2.2)

where cpf , βf , and csf are, respectively, the specific heat at constant pressure, coefficient
of thermal expansion, and isentropic sound speed of the fluid. Further, the fluctuations
satisfy the usual, small-amplitude requirements ∆′f � ρf0, Θ

′
f � T0, and P ′f � ρf0c

2
sf

where T0 and ρf0 are the ambient temperature and density.
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2.2. Equations of motion

We now consider the motions that result when a compressible fluid particle is placed
in the uniform fluctuating field described by (2.1). These are a disturbance produced
by the particle in the fluid outside, as well as a fluctuation in the particle produced
by the background motion outside. Both motions are, of course centrally-symmetric
if the particle is spherical, which we assume to be the case. We also assume that
they satisfy the Navier–Stokes equations. When the amplitudes of all fluctuations are
small, the motions are described by the acoustic equations for viscous heat-conducting
fluids. These are (see, for example, Temkin 1981)

∂ρ′

∂t
+ ρ0∇ · u = 0, (2.3)

ρ0

∂u

∂t
+ ∇p′ = 4

3
µ∇(∇ · u)− µ∇× (∇× u), (2.4)

ρ0cp
∂T ′

∂t
− βT0

∂ρ

∂t
= k∇2T ′. (2.5)

The equation of state for both fluids completes the set. Thus

p′ = c2
Tp
′ +

ρ0cp

βT0

γ − 1

γ
T ′, (2.6)

where γ is the specific heat ratio, β is the coefficient of thermal expansion, cT is the
isothermal sound speed, cp is the specific heat at constant pressure, k is the thermal
conductivity, and µ is the viscosity. Since the main equations and the properties
appearing in them apply to either fluid, we shall use the additional suffixes p and f
to denote the fluid in the particle and that outside it, respectively. For example, the
conductivity of the fluids in the particle and outside will be denoted by kp and kf ,
respectively, in which case the symbol k can be used to denote the wavenumber in
the undisturbed field.

The above system of equations applies to both fluids and is complemented by the
usual boundary conditions on the velocity, pressure, temperature and heat flux. When
the particle is a sphere, the motions are along the radial direction so that the two
velocity vectors have only one component each, which is along the radial direction.
That is up = {up, 0, 0}, uf = {uf, 0, 0}.

Although this system and the boundary conditions that it satisfies are linear, further
simplification is necessary owing to the large number of variables. We have already
restricted the study to waves whose length is larger than the particle size. Below we
show that for frequencies such that this restriction applies, the effects of viscosity can
be neglected. However, we find it necessary to retain the thermal effects in both fluids,
as well as the pressure disturbance produced in the exterior fluid by the pulsating
particle. The latter is examined in § 4, where it is shown that its effects are significant
at all frequencies but the smallest, particularly in the case of gas bubbles in liquids.

Here, we consider the temperature fluctuation, noting that, for gas bubbles in
liquids, past investigators have neglected the temperature fluctuations in the external
fluid, on the assumption that it is always very small. Indeed, we find that to be the
case in a limited range of frequencies. But for droplets in gases or in liquids, or for gas
bubbles at low or high frequencies, it is not possible to disregard those fluctuations.
To show this, we consider the changes of temperature in the particle and in the fluid,
relative to those at the surface of the particle, T ′s . As sketched in figure 1, the particle
produces a temperature disturbance, θ′f , which at far distances from it has a very



4 S. Temkin

a
r

T ′
T ′s

T ′p
T ′p (r)

T ′f (r)

H ′f
θ ′f  (r)

Figure 1. Schematic representation of the temperature fields inside and outside the spherical particle
θ′f is the temperature disturbance in the fluid, and T̄ ′p is an average temperature in the particle,
defined in § 3.

small amplitude at all finite frequencies. Hence, the temperature fluctuation at such
distances is simply Θ ′f , the value prescribed by its value in the sound wave. This varies
from case to case, and is usally very small for liquids. But so long as the specific
heat ratio of the fluid outside is larger than unity (as prescribed by thermodynamics),
the amplitude of temperature fluctuation in the liquid far from the particle is never
zero. On the other hand, at the surface of the particle, the disturbance is finite.
Hence, except for the limiting condition ω → 0, where the temperature is uniform
throughout, T ′s and Θ ′f are different. Consider now the fluid in the particle. The
temperature, T ′p, at some point in it depends on the value of the thermal penetration
depth, δκp , relative to the radius of the particle, a, and it is necessary to consider three

separate cases: δκp � a, δκp = O(a), and δκp � a. Since δκp = (2κp/ω)1/2 were κp is the
thermal diffusivity of the fluid in the particle, these correspond, respectively, to low,
moderate, and high frequencies.

At low, but finite, frequencies, the thermal wave is able to equalize the temperature
field within the particle in a very short fraction of the period of the oscillation. Hence,
the instantaneous temperature difference between any point in the particle and the
surface value is exceedingly small, or T ′p ≈ T ′s . On the other hand, as shown above,
the external temperature difference, T ′s −Θ ′f , is finite (and, in fact, it is this difference
that prescribes the instantaneous value of T ′p). Hence at low frequencies, we cannot
neglect the external temperature field.

Consider now the case δκp� a, corresponding to high frequencies. It is clear that
the temperature fluctuation will be negligible at most points in the particle, and
that the temperature fluctuation beyond a small distance outside it will be equal to
Θ ′f . Thus, at high frequencies, it is also not possible to ignore the temperature field
outside.

Finally, we consider the intermediate case, δκp = O(a). Following Prosperetti (1986)
we estimate the order of magnitude of the temperature fluctuations from the condition
that the heat fluxes at the boundary be equal. In this frequency range, the length
scales in both fluids are the corresponding thermal penetration depths, δκp for the

particle and δκf = (2κf/ω)1/2 for the fluid outside. We thus find that the heat fluxes

are of the order of kf(ω/2κf)
1/2(T ′s −Θ ′f), for the fluid, and kp(ω/2κp)

1/2(T ′s −T ′p) for
the particle. Thus, the condition on the heat fluxes gives the estimate

|T ′s − T ′p|
|T ′s −Θ ′f | ∼

{
kfρfcpf

kpρpcpp

}1/2

. (2.7)

This applies to the three cases under consideration, namely gas bubbles in liquids,
droplets in liquids, and droplets in gases. Because the physical property ratios for each
case vary significantly from one to the next (see table 1), the temperature-fluctuation
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Air* Toluene† Water*

cp (J g−1 K−1) 1.012 1.652 4.186
cs (cm s−1) 3.40× 104 1.37× 105 1.48× 105

β (K−1) 3.47× 10−3 1.04× 10−3 1.5× 10−4

γ‡ 1.400 1.3564 1.0034
κ (cm2 s−1) 2.02× 10−1 1.11× 10−3 1.4× 10−3

ρ (g cm−3) 1.23× 10−3 0.870 0.9991

* From Batchelor (1967).
†From Allegra & Hawley (1972).
‡Calculated from the thermodynamic relation γ = 1 +T0β

2c2
s /cp.

Table 1. Physical properties of some fluids at 1 atm and 15 ◦C.

estimate will also differ from case to case. Thus, for gas bubbles in liquids, the
quantity on the right-hand side of (2.7) is of the order of 102, indicating that at
such frequencies, the temperature differences within the particle are much larger than
those in the fluid. But for a liquid droplet immersed in another liquid, the right-hand
side of (2.7) is of order 1, which indicates that the temperature changes inside are
of the same order as those outside. And in the case of liquid droplets in gases, the
magnitude of the temperature changes inside a droplet is about one-hundredth of the
change outside. We therefore conclude that, generally speaking, it is not possible to
disregard the temperature fluctuations in the fluid outside the particle.

2.3. Reduction

We now proceed to reduce the eight coupled differential equations to a more man-
ageable system. Thus, because the motions are centrally symmetric, the velocity field
is irrotational, and can therefore be obtained from a velocity potential, φ, by means
of

u = ∇φ. (2.8)

Further, since the motion is monochromatic, the time dependence occurs only through
the factor exp(−iωt). Using these relations in the above system, we obtain, after some
manipulations,

[∇2 + (ka)2][∇2 + (Ka)2]φ = 0, (2.9)

where the wavenumbers k and K are generally complex and are given, approximately,
by (Temkin 1981)

k = (ω/cs){1 + i[2ων/3c2
s + (γf − 1)ωκ/2c2

s ]} and K = (1 + i)(ω/2κ)1/2, (2.10a,b)

and are such that |k2| � |K2|. This follows from the above equations and from the
fact that both ων/c2

s and ωκ/c2
s are very small. These ratios measure the speeds

of propagation of thermal and viscous waves, respectively, relative to the isentropic
sound speeds, and are essentially equal to the viscous and thermal sound attenuation
coefficients in a fluid. At 10 MHz, for example, these quantities are of the order of
10−2 in air and smaller still in water, meaning, as is well known, that the attenuation
of sound in fluids devoid of boundaries can be usually neglected. The smallness of
|k2/K2| will also be used later to simplify the analysis. Here, we note that because k
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and K are never equal, a solution for φ can be obtained by adding the solutions of

∇2φ1 + (ka)2φ1 = 0 and ∇2φ2 + (Ka)2φ2 = 0. (2.11a,b)

These equations describe two different types of waves. The first represents longitudinal
waves travelling in a viscous heat-conducting fluid; the second represents highly
attenuated thermal waves. Again, owing to the smallness of ωκ/c2

s and ων/c2
s , the

effects of dissipation on the first wave are very small and can be neglected in a first
approximation. Thus, the wavenumber for φ1 becomes real, that is, k ≈ ω/cs. This
fact, together with the absence of shear, means that viscous effects are negligible, so
that the pressure fields are given by the inviscid acoustic relationship

p′ = iρ0 ω(φ1 + φ2). (2.12)

The velocities and temperature fields are given by

u =
∂φ1

∂r
+
∂φ2

∂r
and − βκT ′ = (γ − 1)(k/K)2φ1 − φ2. (2.13a,b)

3. Solution
We now apply the above system of equations to study the response of a small

particle to an imposed field that is fluctuating harmonically in time. That is, far from
the sphere the fluid pressure, temperature and density change harmonically in time
according to pf∞ = p0 +P ′f , Tf∞ = T0 +Θ ′f , and ∆f∞ = ρf0 +∆′f where the fluctuations
are given by (2.1).

Near the particle, the uniformity of pressure and temperature is disturbed by the
particle. The disturbance field satisfies the equations derived in § 2. The complete
field outside the particle is then given by the superposition of the uniform fields far
from the particle plus the disturbance field, together with boundary conditions at
the particle surface and far from it. To avoid confusion with the symbols for the
complete field, we will denote the disturbance pressure and temperature by π′f and
θ′f , respectively. Thus, the disturbance field is prescribed by (2.11a, b). The solutions
to these, which are zero at infinity, are

φ1 = Ah
(1)
0 (kr) e−iωt and φ2 = Bh

(1)
0 (Kr) e−iωt, (3.1a,b)

where

k = ω/csf, K = (1 + i)(ω/2κf)
1/2, (3.2a,b)

and where h(1)
0 is the spherical Bessel function of order zero and of the first kind.

Since h(2)
0 is not needed, we drop, for simplicity, the superscript on h

(1)
0 . Thus, the

radical velocity is

uf = [Akh′0(kr) + BKh′0(Kr)] e−iωt, (3.3)

where the prime on h′0(kr) represents a derivative with respect to the argument.
Similarly, the pressure and temperature disturbances are

π′f = iρf0ω[Ah0(kr) + Bh0(Kr)] e−iωt, (3.4)

−βfκfθ′f = [(γf − 1)(k/K)2Ah0(kr)− Bh0(Kr)] e−iωt. (3.5)
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Thus, the pressure and temperature outside the particle are given by

p′f = P ′f0 e−iωt + iρf0 ω[Ah0(kr) + Bh0(Kr)] e−iωt, (3.6)

T ′f = Θ ′f0 e−iωt − 1

βfκf
[(γf − 1)(k/K)2Ah0(kr)− Bh0(Kr)] e−iωt. (3.7)

Let us now consider the field inside the particle. The solutions inside are similar to
those outside, except that the radial factors have to satisfy the condition of finiteness
at the origin. Hence, the radial dependence inside the particle will be prescribed by
j0, the Bessel function of the first kind, and of zero order. Thus, the radial velocity in
the particle is given by

up = [Ckij
′
0(kir) + DKij

′
0(Kir)] e−iωt, (3.8)

where

ki = ω/csp, Ki = (1 + i)(ω/2κp)
1/2. (3.9a,b)

The corresponding pressure and temperature fluctuations are

p′p = iρp0ω[Cj0(kir) + Dj0(Kir)] e−iωt, (3.10)

−βpκpT ′p = [(γp − 1)(ki/Ki)
2Cj0(kir)− Dj0(Kir)] e−iωt. (3.11)

To obtain A, B, C and D, we make use of the linearized boundary conditions. Thus,
if T ′s and p′s are the fluctuations of temperature and pressure at the surface, and us is
the radial velocity of the surface, those conditions are

T ′p = T ′s = Θ ′f + θ′f, p′p = p′s = P ′f + π′f, up = us = uf. (3.12)

In addition, we have the condition on the heat flux

kf

(
∂θ′f
∂r

)
r=a

= kp

(
∂T ′p
∂r

)
r=a

. (3.13)

The four equations implied by the temperature and pressure boundary conditions
may be solved for A, B, C and D. Thus, introducing the notation

bi = kia, b = ka
qi = Kia, q = Ka

}
(3.14)

we have

A = [(p′s − P ′f)/iρf0ω − βfκf(T ′s −Θ ′f)]/h0(b), B = Bfκf(T
′
s −Θ ′f)/h0(q), (3.15a,b)

C = [p′s/iρp0ω − T ′sβpκp]/j0(bi), D = βpκpT
′
s/j0(qi). (3.16a,b)

When these are substituted into (3.3)–(3.11), the fields in the particle and outside it
will be specified in terms of the surface temperature and pressure fluctuations, which
are not yet determined. To obtain them, we can use the condition on the heat flux
and on the radial velocities. Consider the latter first. On the fluid side, the surface
velocity is prescribed by (3.3). On the particle side, it is prescribed by (3.8), but it
is more convenient to obtain it from the continuity equation for the particle. Thus,
integrating that equation over the equilibrium volume of the particle, vp, and using
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the divergence theorem, we obtain

ρ̄′p =
3ρp0
iωa

us, (3.17)

where

ρ̄′p =
1

vp

∫
ρp

ρ′p(r, t) dv. (3.18)

For the heat flux on the particle side, we operate in the same manner on the particle’s
energy equation to obtain

kp

(
∂T ′p
∂r

)
r=a

=
−iωa

3
(ρp0cppT̄

′
p − βpT0p̄

′
p), (3.19)

with T̄ ′p and p̄′p defined by equations similar to (3.18) for ρ̄′p. Any of these three
quantities can be eliminated in favour of the other two by means of the particle’s
equation of state, which gives, after integration,

ρ̄′p = γpp̄
′
p/c

2
sp − ρp0βpT̄ ′p. (3.20)

In view of (3.17), the left-hand side of this equation is proportional to the particle’s
surface velocity. Thus, (3.20) shows that for a given value of that velocity, the particle
temperature and pressure are coupled.

The quantities T̄ ′p and p̄′p and ρ̄′p thus introduced are, at this stage, defined only as
mathematical entities. Later, it will be shown that they can serve as useful representa-
tions for the temperature, pressure and density fluctuation in the particle over a wide
frequency range.

Let us now return to the velocity and heat-flux conditions. Using the above
quantities, as well as the velocity in the fluid, we obtain

Abh′0(b) + Bqh′0(q) =
iωa2

3ρp0
[γpp̄

′
p/c

2
sp − ρp0βpT̄ ′p]. (3.21)

Substituting here the results for A and B, yields after some algebra

ρf0ωβfκf(q − b)Θ ′f + (1− ib)P ′f = ρf0ωβfκf

[
(q − b)T ′s − 1

3
q2 βp

βf
T̄ ′p

]
+
[
(1− ib)p′s − 1

3
γpb

2Nsp̄
′
p

]
, (3.22)

where

Ns = ρf0c
2
sf/ρp0c

2
sp (3.23)

is the ratio of particle to fluid isentropic compressibilities, and where we have used
the identities

bh′0(b)
h0(b)

= −(1− ib) and
qh′0(q)

h0(q)
= −(1− iq). (3.24)

For the heat flux, we first note that the fluid’s heat flux can be written as

kf

(
∂T ′f
∂r

)
r=a

= −ρf0cpf

βfa
{βfκf(T ′s −Θ ′f)(1− iq)

−(γf − 1)(b/q)2(1− ib)(p′s − P ′f)/iρf0ω}, (3.25)
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where we have neglected a term of order (b/q)2 compared to unity. Equating this to
(3.19) gives

[βfκf(T
′
s −Θ ′f)(1− iq)− (γf − 1)(b/q)2(1− ib)(p′s − P ′f)/iρf0ω]

=
iωa2βf

3ρf0cpf
[ρp0cppT̄

′
p − βpT0p̄

′
p]. (3.26)

Relationships between T̄ ′p and p̄′p as well as among the corresponding surface values
may be obtained from the known spatial variations of the temperature and pressure
in the particle. Thus, from (3.10) and (3.11), we find upon integration

p̄′p/iρp0ω = −3Cj ′0(bi)/bi − 3Dj ′0(qi)/qi, (3.27)

−βpκpT ′p = −3(γp − 1)(bi/qi)
2Cj ′0(bi)/bi − 3Dj ′0(qi)/qi. (3.28)

Using (3.16 a, b) for C and D, and taking advantage of the smallness of (bi/qi)
2, we

obtain

T ′s = 1
3
q2
i G(qi)T̄

′
p, (3.29)

where

G(qi) =
j0(qi)

qij
′
0(qi)

=
tanh[(1− i)zp]

(1− i)zp − tanh[(1− i)zp]
. (3.30)

Here we have introduced the symbol zp to denote the ratio of the particle radius to
the thermal penetration depth into the particle, namely

zp = (ωa2/2κp)
1/2. (3.31)

Similarly, we find that p̄′p is given by

p̄′p = − 3p′s
b2
i G(bi)

+ i(γp − 1)
ρp0cpp

βpT0

ωκp

c2
sp

[
3

b2
i G(bi)

− 3

q2
i G(qi)

]
T̄ ′s , (3.32)

where G(bi) is real and is given by

G(bi) =
j0(bi)

bij
′
0(bi)

=
tan(bi)

bi − tan(bi)
. (3.33)

This function has an infinite number of zeros, each associated with an acoustic
resonance within the particle (for a more complete study of acoustic resonances in an
ideal fluid sphere see Überall et al. 1979).

Returning to (3.32) we see that p̄′p depends on both the temperature and the pressure
at the surface of the particle. However, the temperature comes in only through a factor
that is of the order ωκp/c

2
sp relative to the surface-pressure term, and may therefore

be neglected. Thus,

p̄′p = − 3

b2
i G(bi)

p′s. (3.34)

Because of the singular behaviour of G(bi), the pressure is seen to become infinity
at those values of bi that correspond to acoustic resonances within the particle.
These owe their existence to our neglect of viscosity, and of the second term in
(3.32). The lowest root occurs at bi = 1

2
π, well beyond the resonance due to volume

pulsations. Below such values, T̄ ′p and p̄′p are valid representations of the temperature
and pressure variations within the particle. Beyond them, that interpretation is not
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meaningful. However, T̄ ′p and p̄′p retain their mathematical meaning. The issue will be

re-examined later, where it is shown that T̄ ′p differs little from T ′s for values of zp as
large as 1, and that p̄′p differs little from p′s for values of bi also as large as 1.

Returning now to (3.22) and (3.26), we eliminate T ′s and p′s in favour of T̄ ′p and p̄′p,
and introduce the non-dimensional variables

T =
T̄ ′p
Θ ′f

and Π =
p̄′p
P ′f

(3.35a,b)

to write those equations as

−i(γf − 1)b2[(κf/κp)(q − b)G(qi) + iβp/βf]T − [γpb
2Ns + (1− ib)b2

i G(bi)]Π

= 3(1− ib) + 3i(γf − 1)(b/q)2(q − b). (3.36)

and

[(1− iq)q2
i G(qi)/3 + ihz2]T + [(1− ib)b2

i G(bi)/3− 2i(βp/βf)z
2/3]Π = −2 + i(q + b),

(3.37)

where h = 2ρp0cpp/3ρf0cpf , and where

z = (ωa2/2κf)
1/2 (3.38)

is the ratio of particle radius to thermal penetration depth into the external fluid
and related to zp by means of z = zp(κp/κf)

1/2. Before obtaining general results from
these equations, we consider them in some limiting cases that provide a basis for
comparison.

3.1. Nearly-rigid particles

This case applies closely to droplets in gases because of the very small compressibility
of the droplets relative to that of the gas outside, as well as to solid particles in either
gases or liquids. Here βp/βf → 0, and Ns → 0, so that (3.36) and (3.37) give

T =
i

hz2

1

F
, (3.39)

where F is a complex function of both z and zp, and is given by

F =
1

1 + z − iz
+
kf

kp
G(qi), (3.40)

where G(qi) is defined in (3.30). Equation (3.39) was recently derived elsewhere (Temkin
1998). When both z and zp are very small, we obtain from (3.39) the low-frequency
limit,

T ≈ 1 + ihz2[1 + 1
5
(kf/kp)]. (3.41)

3.2. Isothermal fluid

A second limit of interest occurs when the fluid outside the particle has a specific
heat ratio which is nearly equal to unity. Here, the sound speed in the fluid is very
nearly equal to the isothermal value cTf , so that (3.36) gives

Π = − 3(1− iωa/cTf)

γp(ωa/cTf)2NT + b2
i G(bi)− ib2

i G(bi)ωa/cTf
, (3.42)
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where NT = ρf0c
2
Tf/ρp0c

2
Tp. When the particle is much smaller than the wavelength,

bi � 1 and b2
i G
′(bi) = −3, so that (3.42) becomes

Π =
1− iωa/cTf

1− (ω/ωT0)2 − i(ωa/cTf)
, (3.43)

where

ωT0 =
cTp

a
(3ρp0/ρf0)

1/2 (3.44)

is the particle’s lowest resonant frequency for volume pulsations when the temperature
of the fluid outside remains constant. We shall refer to this as the isothermal resonance
frequency, noting that the temperature in the particle generally varies, as shown by
(3.37).

3.3. Non-conducting fluid

We now consider the limiting case when the thermal conductivity of the external fluid
vanishes. This is obtained by letting z →∞ in the above results. Thus, (3.37) gives

Π = T/ξ, (3.45)

where

ξ =
βp

βf

ρf0cpf

ρp0cpp
. (3.46)

Substituting this into (3.37) and using the thermodynamic relation β2T0c
2
s = cp(γ−1),

gives

T =
3(1− ib)ξ

(1− ib)b2
i G(bi) + b2Ns

. (3.47)

Again, when bi is small, this reduces to the well-known result

T =
(1− ib)ξ

1− ω2/ω2
s0 − ib

, (3.48)

where ω2
s0 = γpω

2
T0 is the adiabatic value of the natural frequency for radial oscilla-

tions. The corresponding result for the pressure is then given by (3.43), with csf and
ωs0 instead of the isothermal values appearing there. It is noted that the adiabatic
limit predicts a temperature discontinuity across the interface equal to

Θ ′f − T̄ ′p = (1− ξ)Θ ′f. (3.49)

3.4. Low-frequency limit

Finally, we consider the very low-frequency limit of the complete results. Here b� 1,
bi � 1, and both z and zp are small. Thus, using (3.36) and (3.37), we obtain the
leading-order results

T ≈ 1 + ihz2[1− ξ + 1
5
(kf/kp)] (3.50)

and

Π = 1 + 1
3
γpNsb

2[1 + ρp0/5ρf0 − (γp − 1)/γpξ]. (3.51)

The first differs from the equivalent limit for a rigid particle, (3.14), only in that it
contains the quantity ξ inside the square bracket. The second shows that the pressure



12 S. Temkin

in the particle remains essentially equal to that outside over a wide range of small
frequencies. In the case of a gas bubble in a liquid, ξ, Ns, and ρf0/ρp0 are of the order
of 103 or larger, so that (3.51) gives

Π ≈ 1 + (ω/ωT0)
2, (3.52)

where we also used (3.44).

4. General results
We now consider the general case when both fluids can have arbitrary values of

the thermal expansion, specific heat ratio, compressibility and heat conductivity. This
case requires the solution of the complete equations for T and Π . This solution can
be obtained without difficulty, but the resulting expressions are too cumbersome to
be useful. Instead of presenting those expressions here, we write the solution for the
temperature in the symbolic form

T =
X + iY

U + iV
, (4.1)

where the functions X, Y, U and V are real and are given in Appendix A. The pressure
ratio, Π , can be obtained by using (4.1) in (3.36) or (3.37).

Although algebraically involved, those expressions are exact within the model and
describe the basic physics of the problem in terms of the physical properties of
the two fluids and the frequency. The expressions can be used to evaluate the real
and imaginary parts of Π and T, and the corresponding surface values, Πs and Ts,
respectively, obtained from Π and T by means of (3.29) and (3.34), respectively. The
results apply to bubbles and droplets in liquids, as well as to droplets in gases.

Below, we consider droplets and bubbles in liquids. Because the results are strongly
dependent on the properties of the fluids, it is the best to consider those cases
separately. For simplicity, we take, in both cases, a particle having a diameter equal
to 100 microns. Similar results are obtained for other diameters. Finally, all results
will be shown for frequencies such that the small parameter ratio k2/|K|2 = 2ωκf/c

2
sf

is smaller than 10−2 for both fluids, and for values of b = ωa/csf smaller than 1.

4.1. Gas bubble in a liquid

We first show the average and the surface values of the non-dimensional temperature
and pressure. Those values are, of course, not identical, except at low frequencies. As
the frequency increases, differences appear owing to the first spatial variations with
the bubble. Figure 2 shows the average and surface values of the magnitude of the
temperature versus zp = (ωa2/2κp)

1/2. It is seen that there are no differences for values
of zp as large as 1. Beyond this value some differences appear, as anticipated by our
order of magnitude estimates in § 2, because of the increasingly smaller penetration
of the thermal waves into the bubble.

Figure 3 shows the pressure ratios versus bi. It is seen that the surface and average
pressure ratios agree closely for values of bi as large as 1. Beyond this value the curves
separate, with the surface pressure magnitude showing wide oscillations that include
acoustics resonances within the particle.

In figure 4 we show the magnitude of Π as a function of the non-dimensional
frequency, ω/ωT0, as predicted by the present theory. For comparison we also show
the bubble pressure as calculated by the isothermal and the non-conducting fluids
theories. It is seen that the isothermal-fluid model agrees with the present theory over
a frequency range that extends, for a bubble of this size, to about ten times larger
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Figure 2. Amplitudes of the average particle temperature ratio, T = T̄ ′p/Θ ′f ( ), and the

surface temperature ratio, Ts = T ′s /Θ ′f ( . . . . . . ), for a 100 µm diameter air bubble in water vs. zp.
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Figure 3. Amplitudes of the average particle pressure ratio Π = p̄′p/P ′f ( ), and the surface

pressure ratio, Πs = p′s/Pf ( . . . . . . ), for a 100 µm diameter air bubble in water vs. ωa/csp.

than ωT0. Beyond that value, the isothermal pressure amplitude decreases faster than
the more complete theory predicts. The figure also shows that the adiabatic model
agrees with the general results for frequencies below resonance. At frequencies larger
than that, it predicts amplitudes that over- or underestimate the actual response. In
addition, of course, the adiabatic pressure peaks at a different frequency.

4.1.1. Comparison to other results

The results obtained above may be compared to the small-amplitude results of
Prosperetti (1991). For simplicity, we consider the ratio of bubble temperature to
bubble pressure. This ratio is explicitly given by (3.22) of Prosperetti’s paper, and
appears in other important aspects of the theory. In the present notation, that equation



14 S. Temkin

102

101

100

10–1

10–2

10–3

10–4

10–2 10–1 101 102

ω /ωT0

100

103

104

;¦;

Figure 4. Amplitudes of the average pressure ratio for a 100 µm diameter air bubble in water vs.
ω/ωT0: . . . . . . , γf − 1 ≈ 0; – – – –, kf = 0; , general results.

can be expressed as

τP

ΠP

= ξ

[
1− sinh(qiy)

y sinh(qi)

]
, (4.2)

where y = r/a, and where the suffix P has been added to identify the result. To
compare with our T/Π , we need the spatial average of (4.2). This is obtaind using
the prescription given by (3.18) for the density, and is given by

τ̄P

ΠP

= ξ[1 + 3/q2
i G(qi)], (4.3)

where G(qi) is given by (3.30). In the limit of small frequencies, q2
i G(qi) ≈ −3+ 2

5
iz2
p , so

that τ̄p/ΠP → 0 as ω → 0. This is consistent with Prosperetti’s boundary condition,
and differs from our results which give T/Π → 1 in the same limit.

We also include in our comparisons a third theory, obtained in Appendix B. This
retains the temperature fluctuations in the liquid, but neglects the pressure disturbance
there. That theory gives

τ̄u

Πu

= ξ +
1− ξ
hz2

i

F
+

1

hz2

i

F

1−Πu

Πu

. (4.4)

To compare this with T/Π and τ̄p/ΠP , we need Πu, the pressure in the bubble that
applies when the pressure disturbance in the liquid is neglected. This quantity is not
given by the simple analysis of Appendix B. However, if we make the additional
assumption that Πu ≈ 1 at all frequencies, then

τ̄u

Πu

= ξ − 3

q2
i

(1− ξ)

kp/kf

[
1

1 + z − iz
+
kf

kp
G(qi)

]−1

, (4.5)

where, for the purpose of comparison we have left the symbol Πu on the left-hand
side, even though it has been taken to be equal to unity. Thus, (4.5) applies provided
the pressure in the particle is equal to that of the fluid at all frequencies. For simplicity,
we refer to this result as the uniform-pressure theory.

Because of the large value of ξ applicable to gas bubbles in water, (4.3) differs
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Figure 5. (a) Amplitude and (b) phase of T/Π for a 100 µm diameter air bubble in water vs. zp:· · · · · · equation (4.3); – – – –, equation (4.4); , general results.

from (4.5) only in that the quantity 1/(1 + z − iz) is absent in it. This quantity takes
into account the temperature variations in the liquid outside the bubble, which are
neglected in Prosperetti’s analysis, and is significant only at low frequencies, as shown
below. Thus, it appears that τ̄P /ΠP is, at all frequencies but the lowest, equal to τ̄u.

In figures 5 (a) and 5 (b) we show a comparison of the magnitude and phase
angles of the average temperature–pressure ratio as predicted by these three different
theories. It is seen that the uniform-pressure theory agrees with the more complete
results derived here at the lowest frequencies. This occurs because both sets retain the
temperature fluctuations in the liquid, and because in the limit of low frequencies, the
pressure disturbance, which is retained in the more complete analysis, is negligible. On
the other hand, it is seen that beyond the lowest frequencies shown in those figures,
the uniform-pressure theory agrees very closely with Prosperetti’s theory, implicitly
indicating that the effects of the pressure disturbance are not taken into account in
Prosperetti’s model.

However, the more complete theory, though initially agreeing with the uniform-
pressure results, departs significantly from them, and from Prosperetti’s, as the fre-
quency increases, being more than two orders of magnitude lower than either of them
in the range 1 6 zp 6 102. Such large differences are due to the neglect, in those
theories, of the pressure disturbance in the liquid. Unlike the fluid temperature fluctu-
ation, where a frequency region exists that makes its neglect reasonable, the pressure
disturbance cannot generally be neglected. This may be seen by considering the lin-
earized momentum equations for both fluid in the particle and outside it. Thus, in the
absence of viscosity and for monochromatic time dependence, we have, from (2.4),
iωρp0up = ∇p′p for the particle, and iωρf0uf = ∇p′f for the exterior fluid. Taking the
dot product of these with the unit normal vector at the bubble surface and applying
the boundary condition on the velocity, we obtain, since P ′f is independent of position,(

∂p′p
∂r

)
r=a

=
ρp0

ρf0

(
∂τ′f
∂r

)
r=a

. (4.6)

The length scale for changes of pressure in either fluid is the corresponding acoustic
wavelength. Hence, we have, in analogy with the temperature estimate in § 2,

|p′s − p′p| ≈ ρp0csp

ρf0csf
|p′s − P ′f |. (4.7)
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Figure 6. Amplitudes of the pressure-disturbance ratio for a 100 µm diameter air bubble
in water vs. zp.

Given the very small value of ρp0csp/ρf0csf for gas bubbles in water, (4.7) shows
that the pressure inside the bubble is nearly uniform, as we already know. But by
the same equation, the pressure changes in the exterior fluid are not negligible, and
produce, as figure 5 shows, significant differences in the field within the particle. This
is further shown in figure 6, where the magnitude of the pressure disturbance at the
surface of the bubble is displayed as a function of zp. Thus, we see that beginning at
about zp = 1, the magnitude of the pressure disturbance at the surface of the particle
increases rapidly, becoming quite large at resonance and beyond.

4.1.2. Polytropic index

Because of their near uniformity in the bubble, it is sometimes assumed that the
pressure and the temperature are, at every instant, related by an equation of the form

Tp = cp
(κ−1)/κ
p , where κ is called the polytropic index. Of course, this index depends

on the properties of both fluids as well as on the frequency. It therefore does not
represent a property of the gas in the bubble, as implied by its name. Nevertheless,
the relation has proved to be useful in some contexts, and it is therefore appropriate
to include it here, even though, as figure 2 shows, the temperature non-uniformity
is significant for values of zp equal to 1 or larger. Adapted to the small-amplitude
oscillation being considered, the polytropic relationship can be written as

T =
γp

γp − 1

κ− 1

κ
ξΠ. (4.8)

Because the temperature and pressure ratios generally have different phases, this
equation implies that the polytropic index κ is complex. Its value can be obtained in
terms of the complex ratio T/Π , of τ̄P /ΠP in Prosperetti’s theory, or of the equivalent
ratio for the uniform-pressure theory, τ̄u/Πu. Thus, for example, for the present theory
we have

κ =

[
1− γp − 1

γpξ

T

Π

]−1

. (4.9)
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Figure 7. Real part of κ for a 100 µm diameter air droplet in water vs. zp:
. . . . . . , uniform-pressure theory; – – – –, Prosperetti; present results.

The existence of an imaginary part in this expression indicates that the pulsations
are accompanied by dissipation, and in fact, as shown later, the imaginary part of
κ is directly associated with the thermal damping of a pulsating bubble. Because of
that connection, we postpone the discussion of the imaginary part of κ until section
(§ 8). In figure 7 we give the real part of κ as predicted by the three separate theories
mentioned above. It is seen that the uniform-pressure theory predicts a real part of
κ that is in agreement with Prosperetti’s results, whereas the more complete theory
differs, significantly, from both as the frequency increases. In particular, it is seen that
the real part of κ, as given by (4.9), is essentially equal to 1 in the range of validity of
the theory. The reason for this is that the pressure disturbance effectively maintains
the pressure in the bubble at the same value as the pressure in the liquid, except
near resonance and beyond, where, however, the changes are such that T/Π remains
approximately constant, as figure 5 a shows.

4.2. Droplet in a liquid

The response of a droplet to an acoustic wave in a liquid is, of course, very different
from that of a gas bubble because the compressibility of the liquid in the drop is
comparable to that of a fluid outside. However, for some droplets in some liquids, the
droplets also magnify the driving field, although this time the magnification is not as
marked. As we will show below, the small-amplitude peaks displayed by the curves
occur near the natural isothermal frequency of oscillation. This frequency has a much
higher value than that for a bubble of the same diameter because, here, the ratio of
ambient densities appearing in (3.44), is about 1.

We begin by comparing the surface and average pressures and temperatures as we
did for bubbles. In figures 8 (a) and 8 (b) we show the variations, with frequency, of
those quantities for the case of toluene in water. Because the pressures change only
by small amounts, we show their variation on a linear scale. The surface temperature,
on the other hand, varies by several orders of magnitude, and is therefore shown on
a logarithmic scale. It is noted that the differences between the average and surface
values of the temperature ratios are rather significant for frequencies beyond zp = 1.

Figure 9 (a) shows the pressure-fluctuation ratio predicted by the isothermal and
the adiabatic theories, as well as the complete results predicted by (3.29). All three
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Figure 9. Amplitude of (a) the pressure ratio and (b) the temperature ratio for a 100 µm diameter
toluene droplet in water vs. ω/ωT0: . . . . . . , kf = 0; , general results. Dashed line in (a) is for
the isothermal theory γf − 1 ≈ 0.

theories predict a broad resonant response of small amplitude, but the amplitude
and location of the maximum in those curves differ slightly among them. Finally,
figure 9 (b) shows the corresponding temperature-fluctuation ratio for the adiabatic
and general models.

5. Heat transfer to the particle
The heat transfer rate, Q̇p, to the pulsating particle is given by (3.19), multiplied by

the equilibrium surface area of the particle. Thus, using the thermodynamic relation
T0β

2c2
s = cp(γ − 1), we have, for the complex heat transfer rate

Q̇p = 4πakf[(1− iq)(Θ ′f − T ′s ) + (1− ib)(βfT0/ρf0cpf)(P
′
f − p′s)]. (5.1)

This may be also expressed in real form by using q = (1 + i)z, and by noting that
Θ ′f − T ′s and P ′f − p′s are equal to the differences of the absolute temperature and
pressures between the fluid far from the particle and the particle’s surface. Thus, if
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bubble in water: . . . . . . , equation (5.2); – – – –, equation (5.3).

Q̇p now denotes a real quantity, we obtain

Q̇p = 4πakf(1 + z)(Tf − Ts)− 2πa2(ρf0cpfkf/ω)1/2 d(Tf − Ts)
dt

+4πaκfβfT0(pf − ps) + 4πa2βfT0

κf

csf

d(pf − ps)
dt

. (5.2)

This shows that, generally speaking, both temperature and pressure differences affect
the heat transfer. However, as shown in figure 10 for air bubbles, the pressure
dependence is negligible. In that figure we show the magnitude of Q̇ = Q̇p/4πakfΘ

′
f

as a function of z for a gas bubble, using (5.2) with and without the pressure term.
It is seen that both results are essentially equal. The same is applicable for the phase
Q̇ = Q̇p/4πakfΘ

′
f . Thus, with no appreciable error, the heat transfer rate is given by

Q̇p = −4πakf(1 + z)(Ts − Tf) + 2πa2(ρf0cpfkf/ω)1/2 d(Ts − Tf)
dt

. (5.3)

Further simplification is possible when the average particle temperature can be used,
but as shown in figures 2 and 9(b), this generally involves some error, particularly in
the case of droplets in liquids. In the limit of low frequencies, however, (5.3) reduces
to the well-known quasi-steady limit

Q̇p = −4πakf(T̄p − Tf). (5.4)

6. Energy considerations
The results given in § 5 may be used to obtain expressions for the rates at which

energy is dissipated by mechanisms that remove energy from the incident wave. Those
quantities are important in studies of sound propagation in suspensions, particularly
in determining the attenuation of sound waves. They also can be used to determine
damping coefficients for radially-pulsating gas bubbles. In the present study, the active
mechanisms include acoustic radiation by the pulsating particle and thermal losses
both in and outside the particle. Viscous losses, which exist in real fluids, have not
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Figure 11. Energy dissipation rates: input energy rate; – – – –, 〈ėac〉+ 〈ėth〉 for (a) an air
bubble in water, and (b) a toluene droplet in water.

been included in the present analysis. As was pointed out earlier, viscous effects are
small because the motions are purely radial. For translational motions, however, they
are significant but in the linear approximation the related dissipation rate is decoupled
from the pulsational dissipation rates, and may be calculated, separately, by taking
the particles to be rigid, and by ignoring all thermal effects.

Now, for pulsational motions, on the other hand, the two dissipative mechanisms
are generally coupled because the acoustic radiation is dictated by the pressure
disturbance emitted by the particle, but this pressure disturbance is closely tied to the
temperature field in the particle as we have seen earlier. To emphasize this, we first
consider the total dissipation rate.

6.1. Total energy dissipation rate

When the pulsations are stationary, the total average energy dissipation rate, 〈ėloss〉total
is approximately equal to the average rate at which the external fluid does work on
the particle, 〈ėin〉. Thus, since the radial displacement per unit time is us, the surface
velocity of the particle, we have

〈ėloss〉total = −4πa2〈Re(Pf) Re(us)〉. (6.1)

Making use of (3.17) and (3.20), we express us as

us = (iωa/3)[γp Im(Π)− (βp/βf)(γf − 1) Im(T )/Ns](P
′
f/ρp0c

2
sp). (6.2)

Because the pulsations are monochromatic, we may express 〈Re(P ′f) Re(us)〉 as
1
2

Re(P ′fu∗s ), where u∗s is the complex conjugate of us. Thus, substitution of (6.2)
in (6.1) yields

〈ėloss〉total = − 2
3
πa2csfb[γpΠ − (βp/βf)(γf − 1)T/Ns]

|P ′f |2
ρf0c

2
sf

. (6.3)

This shows that the temperature and pressure in the particle determine the total
energy loss. Of course, the corresponding contributions depend on the specific fluids
being considered. For example, when the external fluid is a liquid, the second term
is rather small, owing to the smallness of (γf − 1). But even then, the effects of the
temperature variations in the particle may be present through Π . In figure 11 (a)
we show this total dissipation rate for a 100µm diameter air bubble in water, made
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non-dimensional using 2
3
πa2csf |P ′f |2/ρf0c

2
sf . This quantity represents, essentially, an

acoustic energy flux through an area equal to the equilibrium area of the particle.
The figure shows the anticipated effects of resonance. The corresponding result for a
droplet in a liquid is shown in figure 11 (b). The dashed lines shown in these figures
are discussed below.

Now, because the only active mechanisms are acoustic radiation and thermal losses,
the total dissipation rate is also equal to the sum of the corresponding dissipation
rates, or

〈ėloss〉total = 〈ėac〉+ 〈ėth〉. (6.4)

It is however evident that the two quantities on the right-hand side of this equation
cannot be identified with the corresponding terms in (6.2). Because in the literature it
is customary to give results for the acoustic and thermal losses separately, we obtain
those quantities below, noting that (6.4) provides a means for comparison of the
results.

6.2. Acoustic radiation

We first compute the acoustic energy dissipation rate, 〈ėac〉. This is defined as the
average energy that is radiated by the pulsating particle per unit time, in the form of
acoustic waves. Since the motion is radial, all we need is the radial acoustic intensity,

Ir = 〈π′fur〉, (6.5)

where π′f and ur are the pressure and velocity produced by the sphere. These quantities
are given by (3.3) and (3.4). We substitute those results into (6.5) and obtain

Ir = − 1
2
ρf0csf Re[i|A|2kh∗0(kr)h′0(kr) + i|B|2Kh∗0(Kr)h′0(Kr)

+iA∗BKh∗0(kr)h
′
0(Kr) + iAB∗kh∗0(Kr)h

′
0(kr)], (6.6)

where the asterisk represents a complex conjugate. The average energy lost due to
acoustic radiation is equal to this intensity, multiplied by the area of any surface
enclosing the sphere. For simplicity, we take a concentric spherical surface in the far
field of the pulsating sphere, where the products of the spherical Bessel functions
appearing in Ir can be approximated by their asymptotic values, giving

〈ėac〉 = 2πρf0csf{|A|2 + b|B|2/4z}, (6.7)

where A and B are given by (3.15 a, b). Because of the smallness of ωκ/c2
sf , the second

term in A may be neglected compared to the first. We may also neglect, entirely, the
second term in (6.7). These simplifications yield

〈ėac〉 = 2πρf0a
2csf |Π − 1|2 |P

′
f |2

ρf0c
2
sf

, (6.8)

where Π − 1 is the non-dimensional pressure in the disturbance field.

6.3. Thermal dissipation

We now compute the average rate at which energy is lost due to thermal effects, 〈ėth〉.
This is due to dissipation in the particle 〈ėth〉p, and dissipation in the fluid outside,
〈ėth〉f . Both can be obtained from the well-known thermodynamic result that connects
energy losses to the entropy increase. Thus, 〈ėloss〉 = T0〈Ṡ〉, where Ṡ =

∫
V
ρ(Ds/Dt)dv

and s is the entropy per unit mass. (A more detailed description of the technique may
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be found in Landau & Lifshitz 1959. Its application to the present problem is found
in E & C, Fukumoto & Izuyama 1992, and Temkin 1993).

The entropy change in a volume V of fluid is due to a flow of heat into the volume,
plus a contribution due to irreversibilities within the volume (see, for example, Temkin
1981). For an inviscid fluid, it can be expressed as

Ṡ = k

∫
A

n · ∇T
T

dA+ k

∫
V

(∇T
T

)2

dV , (6.9)

where A is the surface area bounding the volume, and n is a unit normal vector
pointing away from it, and where we assumed that the thermal conductivity is
constant. We now linearize this equation and then take the time average to obtain
the thermal energy loss rate

〈ėth〉 = − k

T0

∫
V

〈T ′∇2T ′〉dV . (6.10)

The region of integration is naturally divided into the particle and the fluid outside.
We consider each separately.

6.3.1. Particle

Using the energy equation for the particle, to express the Laplacian of the temper-
ature, we have

〈ėth〉 = 1
2
ωβp Re

[
i

∫
vp

Tpp
′
p
∗ dv

]
. (6.11)

Now, since as we have seen that p′p is very nearly uniform, it can be taken outside the
integral and we obtain the simple result

〈ėth〉p ≈ 2
3
πa2csfb(βp/βf)(γf − 1) Re(iTΠ∗)

|P ′f |2
ρf0c

2
sf

. (6.12)

When the spatial variations of T ′p and p′p are used, we may express (6.11) as

〈ėth〉p = 2πa2csfb(βp/βf)(γf − 1) Re(iIp)
|P ′f |2
ρf0c

2
sf

, (6.13)

where

Ip = (a3Θ ′fP
′∗
f )−1

∫ a

0

T ′pp
′∗
p r

2 dr. (6.14)

This is obtained in Appendix C. Using that result, we can write

Re(iIp) = − 1
9
b2
i G(bi) Re(iTΠ∗)/j0(bi). (6.15)

The thermal losses then follow from (6.13) and (6.15). However, as is shown below, the
approximate result given by (6.12) is sufficient for all frequencies, except the highest.

6.3.2. Fluid

The computation of the thermal dissipation rate for the fluid follows the same
lines as that for the particle, except that the fluid temperature fluctuation has two
components: the background and disturbance fluctuations. Thus,

〈ėth〉f = − kf
T0

Θ ′f

∫
v

〈∇2θ′f〉 dV − kf

T0

∫
v

〈θ′f∇2θ′f〉dV . (6.16)
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Figure 12. Non-dimensional thermal energy-dissipation rates for a 100µm diameter air bubble in
water: . . . . . . particle, equation (6.13); – – – –, particle, equation (6.12); - - - -, fluid, equation (6.18);
– – – fluid, equation (6.18) without κfQ̇/acsf .

The first integral may be transformed into an integral over the area composed of the
particle surface and a concentric spherical surface at infinity, where the disturbance is
zero. The inner surface integral, multiplied by kf , is equal to the particle heat transfer.
The second integral can be simplified slightly by means of the energy equation for
the fluid, (2.5). Thus, (6.16) becomes

〈ėth〉f =
1

2T0

Re(Q∗pΘ
′
f) + 1

2
ωβRe

[
i

∫
vf

θ′fπ
′∗
f dV

]
. (6.17)

This may be written as

〈ėth〉f = 2πa2csf{bRe(iIf)− (κf/acsf) Re(Q̇)}(γf − 1)
|P ′f |2
ρf0c

2
sf

, (6.18)

where Q̇ = Q̇p/4πakfΘ
′
f and

If = (a3Θ ′fP
′∗
f )−1

∫ ∞
a

θ′fπ
′∗
f r

2 dr. (6.19)

This integral is also considered in Appendix C and may be expressed as

If =
(Ts − 1)(Π∗s − 1)

q − b . (6.20)

It may be noted that the two quantities in the numerator of this equation are the
temperature and pressure disturbance produced by the pulsating particles, evaluated
at the surface of the particle. Ignoring these disturbances thus affects the thermal
dissipation in the fluid. More importantly, however, the neglect of those disturbances
affects the particle-dissipation rate, owing to the diminished ability of the particle to
reduce its energy by sending excess energy into the fluid. This will be seen in the
following figures where we show the dissipation rates, also made non-dimensional
using 2

3
πa2csf |P ′f |2/ρf0c

2
sf . First, in figure 12 we display the particle and fluid thermal

energy dissipation rates for a 100 µm diameter air bubble in water. Two results are
shown in each case. For the particle, the first is based on (6.12) and ignores the
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Figure 13. Non-dimensional total thermal energy-dissipation rates for a 100 µm diameter air
bubble in water: ; equations (6.13) and (6.18) (without κfQ̇/acsf); . . . . . . , equation (6.22);
– – – –, uniform-pressure theory, equation (6.23).

variations of pressure within the bubble. The second is obtained with the more
accurate result given by (6.13). It is seen that the simpler result (6.12) agrees with the
more accurate result for values of zp that extend well above resonance.

For the thermal dissipation in the fluid, one dissipation rate is obtained from
the complete result given by (6.18), and the other from the same equation without
(κf/acsf) Re(Q̇). It is seen that the fluid thermal energy dissipation rate is smaller
than that in the particle at most frequencies, except the highest, where it becomes
comparable to or even larger than that in the particle. At these frequencies, the thermal
waves generated at the surface of the bubble barely penetrate into the fluid, but
significant dissipation takes place in a thin layer around the bubble owing to the large
thermal gradients there. However, at such frequencies the acoustic dissipation rate
overwhelms the thermal dissipation. Hence, without significant loss of information,
as far as the total energy-dissipation rate is concerned, the thermal dissipation rate
may be computed by (6.12) for the particle, and by (6.18), without the second term
inside the curly brackets, for the fluid.

Finally, we include here the thermal-energy dissipation rate that is obtained from
the uniform-pressure theory derived in Appendix B. Here Πu = 1 so that (6.12) yields

〈ėunifth 〉 = πa2csf
b

z2
(γf − 1)ξ|1− ξ| |P

′
f |2

ρf0c
2
sf

Re

(
1

F

)
. (6.21)

The thermal dissipation rates predicted by this equation and by the more complete
results given by (6.12) and (6.18) are displayed in figure 13 for an air bubble in water.
The salient feature in the graph is the strong discrepancy between the uniform-pressure
thermal dissipation rate and the other two rates, both of which were obtained from a
theory that allows the fluid outside the bubble to sustain both temperature fluctuations
and temperature and pressure disturbances. The differences are clearly related to the
neglect of the pressure disturbance, and produce two distinct effects. One is that the
uniform-pressure theory does not display the effects of resonance that are apparent
in the more complete theory. This is an anomaly because the larger amplitude at
resonance must produce a larger dissipation rate. The second is the considerably
larger dissipation that the uniform-pressure theory predict at most frequencies. The
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©ėacª

Figure 14. Non-dimensional energy-dissipation rates for a 100 µm diameter air bubble in water:
, acoustic; . . . . . . , thermal (equation (6.22)).

main reason for this is that when Π = 1, the bubble is not able to release excess
energy into the surrounding fluid via a mechanism that is essentially reversible, namely
the pressure disturbance Π−1. Were this mechanism not available, that energy would
have to be dissipated within the bubble, thus increasing the damping.

In figure 14 we show the thermal and acoustic dissipation rates for an air bubble
in water. It is seen that at all frequencies near resonance and beyond, the acoustic
dissipation rate is the dominant loss mechanism.

Finally, the total energy dissipation rate for the same air bubble in water, as
computed in terms of the sum of the two separately computed energy dissipation
rates is shown in figure 11. As anticipated, the two computations give approximately
the same results, except in a band of frequencies slightly below resonance, and at very
high frequencies. The reasons for the differences are directly related to the differences
between the surface and average temperature fields in the bubble, as shown in figure 2.

We now consider the energy-dissipation rates for a toluene droplet in water. To save
space, we show in one graph, figure 15, both thermal and acoustic the dissipation
rates. In this case, (6.18) has been used to calculate the thermal dissipation in
the fluid. Although drastically different in shape, the same conclusions as found
for the gas bubble apply here, namely the acoustic dissipation rate is dominant
near resonance and beyond, and that the uniform-pressure theory overestimates the
thermal dissipation rate, though not by as large a factor as it does for the gas bubble.

7. Attenuation in dilute suspensions
As the first application of the results obtained above, we consider the attenuation

of plane sound waves in dilute suspensions. The derivation presented below is limited
to situations where the resulting attenuation per wavelength is small. In that case, we
may extract the attenuation from the energy dissipation rates by means of (see, for
example, Landau & Lifshitz 1959) α = |〈Ėloss〉|/2csfE0, where Ėloss is the total energy
loss per unit volume, and E0 is the average acoustic energy in the incident wave
that is contained in the same volume. For this case, the energy dissipation rates are
additive, so that the energy loss produced by all the particles is equal to the number
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Figure 15. Non-dimensional energy-dissipation rates for a 100 µm diameter toluene droplet in
water: . . . . . . , acoustic; , thermal (equations (6.12) and (6.18)); – – – –, thermal, (equations
(6.12) and (6.18) without κfQ̇/acsf); — — —, uniform-pressure theory (equation (6.21)).

of particles per unit volume, n, times the dissipation rate per particle. Further, the
attenuations produced by each mechanism are separable, so that putting α̂ = αcsf/ω
we have α̂ = α̂ac + α̂th, where

α̂ac = n|〈ėac〉|/2ωE0 and α̂th = n|〈ėth〉|/2ωE0 (7.1a,b)

are the non-dimensional acoustic and thermal attenuations. In addition to these, a
particle in a sound wave will also produce sound attenuation owing to its lateral
motion in the wave. The latter attenuation, called viscous in the literature, has also
been considered before by many investigators, and the author has recently presented
a theory for it that covers a very wide range of frequencies (Temkin 1996, 1998).

Now, the reference energy, E0, for a plane wave is given by E0 = |P ′f |2/2ρf0c
2
sf .

Thus, we immediately obtain

α̂ac = 3
2
φv|Π − 1|2, (7.2)

where φv = 4
3
nπa3 is the particle volume fraction in the suspension.

The thermal attenuation coefficient may be expressed in various forms, depending
which of the thermal dissipation rates is used. The most detailed description is
provided by (6.13) and (6.18) which yield

α̂th = 3
2
φv(γf − 1)|(βp/βf) Re(iIp) + Re(iIf)−Re(Q̇)/2z2|. (7.3)

A simpler form, adequate for most frequencies is obtained by neglecting the last term
in the above equation, and by using (6.12) for the thermal dissipation rate in the
particle. Thus,

α̂th = 3
2
φv(γf − 1)|(βp/βf) Re(iTΠ∗) + Re(iIf)|. (7.4)

This equation can also be used for the uniform-pressure theory simply by removing
the last term, and by taking the pressure ratio equal to 1, or by using (6.21) in the
definition of the thermal attenuation. Thus,

α̂
unif
th =

3

4z2
φv(γf − 1)ξ|1− ξ|Re

(
1

F

)
. (7.5)
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Figure 16. Non-dimensional attenuation for a dilute bubbly liquid of air bubbles in water,
φv = 10−3: , acoustic; . . . . . . , thermal, uniform-pressure theory; – – – –, thermal.

These above coefficients apply to the three types of fluid combinations under consid-
eration. We consider each case separately.

7.1. Bubbly liquids

As is well known, a very small concentration of bubbles produces a very large
attenuation in the vicinity of resonance. This occurs mainly as a result of the much
larger compressibility of the bubbles relative to the liquid. The ratio between the two,
called Ns in this work, multiplies the volume concentration in an explicit expression
for the acoustic attenuation, thereby magnifying its effects by a large factor. In
figure 16 we show the non-dimensional attenuation for a bubbly liquid consisting
of 100 µm diameter air bubbles in water, and having a concentration equal to 10−3.
Although this is indeed small, the peak value of the attenuation exceeds unity by a
large factor. Thus, the energy estimate given above is not applicable in the vicinity of
resonance. In such cases, a second-order estimate, still limited to dilute suspensions,
may be obtained by other means, for example the Kramers–Kronig equations, as done
recently by the author (Temkin 1990) for an isothermal suspension, but this is beyond
the scope of the present work. Figure 16 also shows the thermal attenuation coefficient
that is predicted by the uniform-pressure theory. As it is seen, this overestimates the
thermal attenuation by a large amount, except at resonance, where it underestimates
it.

7.2. Liquid-droplet aerosols and emulsions

These cases are related because the particles in them are droplets. There are, however,
significant differences between the two, both in magnitude and trend. Also, long-
standing theories exist for both cases, and it is important to compare our results
with them. Notable among them is the theory of Epstein & Carhart, who considered
thermal and viscous attenuation in suspensions and emulsions (E & C). In the present
notation, their thermal attenuation may be expressed as

α̂th =
3

4z2
φv(γf − 1)(1− ξ)2 Re

(
1

F

)
, (7.6)
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Figure 17. Non-dimensional thermal attenuations for a dilute emulsion of 100 µm diameter toluene
droplets in water, φv = 10−3: — — —, uniform-pressure theory; , present results; . . . . , E & C.

where the complex function F is given by (3.40). As pointed out by Allegra & Hawley
(1972), this result had been obained earlier by Isakovich (1948). Both results apply
when the particle diameter is smaller than the wavelength in the incident wave, and
are therefore directly comparable to ours.

First we consider the case of droplets in gases. In this aerosol, the ratio of particle
to fluid compressibilities is very small, so that over a wide range of frequencies the
particles can be considered rigid. The thermal attenuation for them may be obtained
from the thermal dissipation rates given earlier by taking the limit βp/βf → 0. Thus,

α̂
rigid
th =

3

4z2
φv(γf − 1) Re

(
1

F

)
. (7.7)

Although expressed differently, this result is equal to one derived recently by the
author from a new theory for sound propagation in suspensions of rigid particles
(Temkin 1998), as may be seen from equations (A 8) and (43 b) of that work. Now,
for liquid droplets in gases, the quantity ξ appearing in (7.6) is typically smaller than
0.01 and can therefore be neglected. Thus, the rigid-particle theory agrees, in this case,
with that of E & C. It also agrees with the particulate-relaxation theory (Temkin &
Dobbins 1966a), and has been verified experimentally for both solid particle aerosols
(Zink & Delsasso 1958), and liquid particle aerosols (Temkin & Dobbins 1966b).

We now consider emulsions. Here ξ is of order 1, and must therefore be retained
in the results. As its definition shows, this quantity contains the ratios of thermal
expansions and heat capacities. In the theory presented here, these ratios play different
roles at different frequencies, and it is only in the limit of low frequencies that ξ
appears as a separate group. Thus, for example, in the limit of low frequencies, our
thermal attenuation is proportional to (1− ξ)[1 − ξ + 1

5
(kf/kp)]. On the other hand,

in the theory of Isakovich and of E & C, ξ appears only as indicated explicitly in
(7.6). Since the function F in that equation does not contain the thermal expansion
coefficients or the heat capacities of either fluid or particle, we find the surprising
result that those theories differ from the rigid-particle result only by a constant factor
at all frequencies. We also find that significant differences exist between the E & C
result and ours, as shown figure 17, where we compare our thermal attenuation result,
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(7.3), to that of E & C for an emulsion of 100 µm toluene droplets in water having a
volume concentration equal to 10−3. The reason for the differences can be traced to
the absence of a pressure disturbance in (7.6). This follows from comparison between
the attenuation predicted by the uniform-pressure theory, also shown in the figure,
and the other results. It should be added that these differences occur for b < 1, that
is, in the long-wavelength frequency range.

The agreement between the E & C and uniform-pressure theories seems to imply
that the pressure disturbance was not considered by E & C. But this implication is
not warranted, as their derivation clearly shows. The reasons for that agreement are
made clear in their Appendix A, where it is made evident that the explicit results
they give apply only to droplets in gases, as is also clear in title of their paper. Thus,
(7.6) does not apply to emulsions. This fact was known to Allegra & Hawley who
re-examined the attenuation theory of E & C very closely, and extended it so as
to include solid elastic particles, claiming that E & C obtain the correct result only
fortuitously. But in the case of thermal attenuation in emulsions, Allegra & Hawley
obtain the same long-wavelength result given earlier by E & C and by Isakovich.
That result is contained in their coefficient A0 given by their equation (10). This
is then approximated to obtain their equation (13), from which (7.6) follows, but
the magnitude of the errors introduced by the multiple approximations made in the
process is unclear.

A related issue is the attenuation of the main wave produced by pulsations of the
particles. Allegra & Hawley do mention scattering, and in fact their equation (32)
gives the lowest-order scattering coefficient. That equation consists of two terms. The
first is related to our low-frequency disturbance pressure, and the second is due to the
scattering that is produced by a particle executing translational oscillations. But it is
unclear whether the related attenuation effect was included in their general solution
for the attenuation at all frequencies. That attenuation is not explicitly mentioned in
the text, nor do their figures for emulsions give an indication of acoustic radiation in-
fluencing the attenuation, although this could be due to the small size of the particles
used by them when reducing the theory. E & C do not mention the acoustic attenua-
tion either, but this is not surprising, given that the paper refers to droplets in gases.

Now, although droplets do not pulsate as readily as bubbles, the energy they radiate
is, at some frequencies, comparable to or larger than to the energy losses associated
with thermal losses. This is shown in figure 18 for a dilute emulsion composed of
toluene droplets in water. Also shown in the figure is the attenuation coefficient that
applies to an emulsion as a result of viscous and mechanical scattering effects that
are active owing to the translational motion of the droplets. The viscous attenuation
component has been calculated by several investigators in the past (for example,
Epstein 1941; Urick, 1948; E & C; Allegra & Hawley 1972), but as we have shown
recently using two different approaches (Temkin 1996, 1998), their results do not
correctly describe the dependence of that attenuation on the ratio between fluid
and particle densities. The net effect of the differences is to increase the magnitude
of the translational motions at all frequencies, making the effects of viscosity more
important in emulsions than previous results had implied. In figure 18 the recent
results obtained by the author have been used. As is seen there, thermal effects are
more important at lower frequencies. Viscous effects become are dominant in the
mid-frequency range, and at high frequencies the acoustic radiation is the largest.

Because of the several differences noted above, it is useful to compare our results to
experimental attenuation data. Perhaps the most careful set of experiments that exist
for that case are the measurements of Allegra & Hawley in an emulsion composed
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Figure 18. Non-dimensional acoustic, thermal and translational attenuations for a very dilute
emulsion of 100 µm diameter toluene droplets in water, φv = 10−3: – – – –, acoustic; . . . . . . , thermal;

, translational.

100

100 101

Frequency (MHz)
102

101

103

102

10–1

104

103

105

α
/f

2
×

10
17

 s
2  

cm
–1

Figure 19. Allegra & Hawley’s attenuation data in an emulsion of toluene droplets in water having
a concentration equal to 0.2 and a diameter of about 7 µm. The lines represent dilute attenuation
theories: . . . . . . , translational; − · − · − · −, thermal; – – – –, acoustic; , total attenuation.

of 0.3–0.4 µm radius toluene particles in water. Regrettably, the volume concentration
used by them was rather high, 0.2, so that our theory, like that of E & C, is not
applicable. Nevertheless, we show in figure 19 a comparison with our results, plotted
in the same manner as done by Allegra & Hawley. It is seen that the experimental
data follow the same trend as the total attenuation, but have consistently larger
values. Given the high concentration in their experiments, the polydisperse nature of
the particle size, and the fact that a surfactant was added to stabilize the emulsion, it
is surprising to see even a trend agreement.
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8. Damping coefficients for gas bubbles
The results obtained in § 4 give the temperature and pressure of a fluid particle in

a sound wave, and, therefore, specify the response of the particle. However, in the
case of gas bubbles, it is customary to describe that response in terms of an effective
damping coefficient, which is obtained by writing the response in a manner analogous
to that of harmonic oscillator.

Here we obtain the damping coefficient of radially-pulsating particles from the same
energy dissipation rates that were used to obtain the attenuation coefficients. The two
quantities are of course related, but are defined differently. Thus, the attenuation
coefficient represents an energy loss scaled with the energy of the incident wave,
whereas the damping coefficient represents the same loss, scaled with the energy that
is due to the pulsational motion of the particles.

Thus, when dissipation is small, the attenuation coefficient is defined by (7.1). The
damping coefficient, on the other hand, may be defined by

β =
|〈ėloss〉|

2e0

, (8.1)

where e0 is the average pulsational energy when the oscillations are stationary. This
definition of the damping coefficient also assumes that the dissipation is small.

Now, the average pulsational energy is the total – kinetic plus potential – average
energy that exists in both particle and external fluids as a result of the particle
pulsations. But for small gas bubbles in liquids, the particle’s kinetic energy and the
fluid’s potential energy may be neglected. Thus, e0 may be obtained by adding the
near-field, or non-acoustic, kinetic energy of the fluid outside the pulsating bubble
to the potential energy of the gas in the bubble. The last quantity requires an
assumption regarding the thermal behaviour of the gas in the bubble. However,
because the oscillations are monochromatic, equipartition of energy applies so that
the average kinetic and potential energies are equal. Hence, the total average energy
of oscillation is simply twice the average kinetic energy of the fluid resulting from the
pulsation. This is known in terms of the added mass and of the radial velocity of the
particle surface. Thus (see, for example, Temkin 1981), e0 = M0|us|2, where

M0 = 3ρf0vp0
1

1 + b2
. (8.2)

The radial velocity of the particle was given in (6.2), in terms of the non-dimensional
pressure and temperature fluctuations. For simplicity we express that result as us =
(iωa/3Ψ )(P ′f/ρp0c2

sp), where

Ψ =

[
γp Π − βp

βf

γf − 1

Ns

T

]−1

. (8.3)

Thus, substation of these equations in e0 = M0|us|2 yields

e0 =
2

3γp
πa3 (ω/ωT0)

2

1 + b2

Ns

|Ψ |2
|P ′f |2
ρf0c

2
sf

, (8.4)

where we used ω2
s0 = γp ω

2
T0 and the definition of ω2

T0 to write 3ρp0 c
2
sp as γp ρf0 ω

2
T0a

2.
It is important to note that this reference energy, like the dissipation rates, depends
on the frequency. Below we use (8.4) to compute the acoustic and thermal damping
coefficients. These will be given in the convenient non-dimensional form prescribed
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by

d̂ =
2βω

ω2
T0

. (8.5)

Thus, using the definition of β, the acoustic dissipation rate, (6.4), and the reference
energy e0, we obtain

d̂ac = 3γp(1 + b2) |Ψ |2 |Π − 1|2/bNs. (8.6)

At low frequencies, this coefficient is essentially equal to the value found in the

literature, namely d̂ac = b(ω/ωT0)
2. This value follows by using (3.52) in (8.6).

The thermal dissipation rate is also found using the same procedure. Thus,

d̂th = γp(1 + b2) |Ψ |2(γf − 1) |(βp/βf) Re(iTΠ∗) + Re(iIf)−Re(Q̇)/2z2|/Ns, (8.7)

which includes both particle and fluid contributions. But as pointed out earlier, for
gas bubbles in liquids, the thermal dissipation in the bubble is significantly larger than
that in the fluid at all frequencies for which the thermal damping is the dominant
mechanism. In that range, we may use for ėth the simpler result, (6.12), which is
entirely due to the particle,

d̂th ≈ γp(γf − 1)(βp/βf)(1 + b2)|Ψ |2|Re(iTΠ∗)|/3Ns. (8.8)

We may express this in a more succinct manner in terms of the quantity κ introduced
in § 4. Using (4.9), we first write

|Ψ |2| Im(iTΠ∗)| = ξ

γp(γp − 1)
Im(κ), (8.9)

where we have used the fact that Im(κ) > 0. Next, we note that b2 � 1, so that on
using the definition of ξ, we obtain,

d̂th = Im(κ). (8.10)

Thus, when we neglect the contributions of the external thermal dissipation, we
find that the thermal damping coefficient is simply given by the imaginary part of
κ. This is shown graphically in figure 20 for both the uniform-pressure and the
general theories. Also shown in the figure are Prosperetti’s non-dimensional thermal
damping coefficient as well as that predicted by (8.7). This includes the effects of
thermal dissipation in the liquid. As discussed earlier, this is important only at high
frequencies. In all cases, the theories have been reduced for a 100 µm diameter air
bubble in water at STP, as a function of zp. As anticipated, we see that the uniform-
pressure theory agrees with Prosperetti’s, except at the lowest frequencies due to
temperature fluctuations in the fluid, and that both significantly overestimate thermal
damping, for the reasons discussed in § 4.

Finally, in figure 21, we show the acoustic and thermal damping coefficients, as
well as their sum, which defines the total damping coefficient, as a function of the
non-dimensional frequency zp. This figure shows that acoustic radiation, and not
thermal damping, is the dominant mechanism at resonance, a result that was to be
expected from our discussion of the energy dissipation rates in § 6.

9. Conclusions
This paper has studied the pulsational motions of a small fluid particle immersed

in another fluid which is sustaining an acoustic wave. Taking into account the
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Figure 20. Thermal damping for a 100 µm diameter air bubble in water: – – – –, d̂th, Prosperetti;
. . . . . . , Im(κ), uniform pressure theory; - - - - -, Im(κ), present results without liquid contribution

(equation (8.1)); , d̂th, general results with liquid contribution.
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Figure 21. Damping coefficients for a 100 µm diameter air bubble in water: . . . . . . , thermal
damping; – – – –, acoustic damping; , total damping.

temperature fluctuations in the external fluid, as well as the pressure and temperature
disturbances produced by the pulsating particle, we have derived analytical results for
the pressure and temperature oscillation in the particle that are more general than
previously available and apply to bubbles in liquids, and to droplets in both liquids
and gases. The results are given in terms of the physical properties of both fluids,
and of the radius of the particle, and may therefore be used to examine the response
in more detail than given here. We also obtained the acoustic and thermal energy
dissipation rates, and showed that for gas bubbles the dominant loss mechanism
at resonance is acoustic radiation. These rates were used to compute attenuation
coefficients in dilute suspensions, as well as damping coefficients for a gas bubble in a
liquid. In the case of the acoustic damping, our analysis agrees with existing theories.
In the case of the thermal damping our results differ, considerably, from those in
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the literature. The differences are due to both the temperature and the pressure
fluctuations in the liquid which were not included in previous analysis. Finally, our
attenuation results agree with existing theories in the case of droplets in gases, provide
a new theoretical framework for attenuation in emulsions, and give the attenuation
in very dilute bubbly liquids, where the dissipation rates are small.

I am grateful to referee C whose comments helped clarify several important issues,
and to Professor A. Solan of the Israel Institute of Technology for many helpful
discussions.

Appendix A. The functions X, Y , U and V appearing in (4.1)
We first introduce the short-hand notation

J = b2
i G(bi), ΓR = Re{G(qi)}, ΓI = Im{G(qi)}.

Then,

X = −6Jb(b+ z)z2 + 6(2 + z)(J + 3γpNsb
2)z2 − 3J[(γf − 1)b2(z − b) + 2z2]

−3b

[
bJ + 2

βp

βf
z2

]
[bz(γf − 1)− 2z2],

Y = −6(J + γpNsb
2)(b+ z)z2 − 6Jb(2 + z)z2 − 3Jb[bz(γf − 1)− 2z2]

+3[(γf − 1)b2(z − b) + 2z2]

[
bJ + 2

βp

βf
z2

]
,

U = 2b2(γf − 1)Jz2

{
−βp
βf

+

(
κf

κp

)
[ΓI (b− z)− ΓRz]

}
+2b2(γf − 1)z2

(
κf

κp

)
[ΓR(z − b)− ΓIz]

×
[
bJ + 2

βp

βf
z2

]
− 4(J + γpb

2Ns)z
2z2
p[zΓR − (1 + z)ΓI ]

−2Jbz2{3hz2 + 2z2
p[ΓR(1 + z) + zΓI ]},

V = 2b2(γf − 1)Jz2

(
κf

κp

)
[ΓR(z − b)− ΓIz]

−2b2(γf − 1)z2

{
−βp
βf

+

(
κf

κp

)
[ΓI (b− z)− ΓRz]

}
×
[
bJ + 2

βp

βf
z2

]
+ 4bJz2z2

p[zΓR − (1 + z)ΓI ]

−2(J + γpb
2Ns)z

2{3hz2 + 2z2
p[ΓR(1 + z) + zΓI ]}.

Appendix B. The uniform-pressure solution
When pressure variations with position are neglected in both fluids, the corre-

sponding energy equations give, for monochromatic time dependence, the following
equations for the non-dimensional temperature disturbances, τu = (T ′p)u/Θ ′f for the
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particle, and τf = θ′f/Θ ′f , for the exterior fluid:

∇2τu +K2
i (τu − ξΠu) = 0, (B 1)

∇2τf +K2τf = 0. (B 2)

The boundary conditions are that the temperature and heat fluxes be continuous at
the equilibrium surface of the pulsating particle. If τs represents the non-dimensional
surface fluctuation, the solution of (B 1) satisfying the first condition can be written
as

τu − ξΠu = (τs − ξΠu)
j0(Kir)

j0(qi)
. (B 3)

A solution can also be obtained in terms of the second condition. Thus,

τu − ξΠu =
kf

kp

(
∂τf

∂y

)
y=1

j0(Kir)

j0(qi)
, (B 4)

where y = r/a and G(qi) is given by (3.30). Hence

τs − ξΠu =
kf

kp

(
∂τf

∂y

)
y=1

G(qi). (B 5)

We substitute (B 5) into (B 3) and average the result over the equilibrium volume of
the particle. This gives

τ̄u = ξΠu

[
1 +

3i

2z2
p

kf/kp

ξΠu

(
∂τf

∂y

)
y=1

]
. (B 6)

To obtain the derivative of the temperature disturbance at the surface of the particle,
we use (B 2), the solution of which satisfying the boundary conditions at the surface
of the particle and at infinity is

τf = (τs − 1)
h0(Kr)

h0(q)
. (B 7)

Taking the derivative of this and evaluating at r = a, we obtain, on using (3.24) for
h′0(q), (

∂τf

∂y

)
y=1

= (1− τs)(1− iq). (B 8)

We now substitute τs from (B 5) in this and obtain(
∂τf

∂y

)
y=1

=
1− ξΠu

F
, (B 9)

where F is given by (3.40). Substitution of (B 9) into (B 6) yields (4.4).

Appendix C. The integrals Ip and If
Ip is defined in terms of T ′p(r) and p′p(r), which are given by (3.10) and (3.11). For

the present purpose it is sufficient to consider

p′p = iρp0ωCj0(kir), T ′p = Dj0(Kir)/βpκp. (C 1a,b)
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Then we can write Ip as

Ip = −i
DC∗

Θ ′f(P ′f)∗
ρp0ω

βpκp

1

biq
2
i

∫ qi

0

sin(u) sin(λu) du, (C 2)

where λ is complex and is given by λ = bi/Ki. This has a small magnitude, so that to
order λ2 we have, upon expansion of Ip, after integration,

Ip = − DC∗

Θ ′f(P ′f)∗
ρp0ω

βpκp

sinh[(1− i)zp]

q3
i G(qi)

. (C 3)

Substituting C and D from (3.16 a, b) gives, after some algebra,

Ip =
1

9j0(bi)

[
−b2

i G(bi)TΠ
∗ − i

γf − 1

ρf0/ρp0

βpκp

βfκf

ωκf

c2
sf

q2
i G(qi)|T |

]
. (C 4)

The last term may be neglected, giving (6.11).

For If we proceed in the same manner as above. Thus, using the leading terms in
the disturbance pressure and temperature in the fluid, namely

π′f = iρf0ωAh0(kr), θ′f = Bh0(Kr)/βfκf, (C 5a,b)

we can write If as

If = −i
BA∗

Θ ′f(P ′f)∗
ρf0ω

βfκf

1

a3

∫ ∞
a

h0(Kr)h
∗
0(kr)r

2 dr. (C 6)

Using the explicit value of h0 to carry out the integration, we obtain

If =
BA∗

Θ ′f(P ′f)∗
ρf0ω

βfκf

h0(q)h∗0(b)
q − b . (C 7)

The coefficients B and A are given by (3.15 a, b). For A it is sufficient to use only the
first term in (3.15 a). Substituting these coefficients into (C 7) gives

If =
T ′s −Θ ′f
Θ ′f

P ′s − P ′f
(P ′f)∗

1

q − b . (C 8)

The final result, (6.18) follows from this by using (3.29) and (3.34).
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Appendix D. List of symbols
a Particle radius
b = ka Non-dimensional pressure wavenumber for external fluid
bi Non-dimensional pressure wavenumber for internal fluid
cTf , cTp Isothermal sound speeds in fluid and particle materials
csf , csp Isentropic sound speeds in fluid and particle materials
cpf , cpp Specific heats at constant pressure

d̂th Non-dimensional thermal damping coefficient
h Heat capacity ratio, 2ρpcpp/3ρfcpf
K Thermal wavenumber
k = ω/cs Pressure wavenumber based on the external fluid’s isentropic

sound speed
kf , kp Thermal conductivities
Ns Ratio of internal to external isentropic compressibilities
NT Ratio of internal to external isothermal compressibilities
P ′f Dilute-suspension fluid pressure fluctuation in a sound wave
ps Surface pressure
p′s Surface pressure fluctuation
pf , pf Total pressures
Q̇ = Q̇p/4πakfΘ

′
f Non-dimensional heat transfer rate to a particle

Q̇p Heat transfer rate to a particle
q = (1 + i)z Value of Ka for interior fluid
qi = (1 + i)zp Value of Ka for exterior fluid
T0 Ambient temperature
Tf , Tp Fluid and particle temperatures
z = (ωa2/2κf)

1/2 Ratio of particle radius to thermal penetration depth in external
fluid

zp = (ωa2/2κp)
1/2 Ratio of particle radius to thermal penetration depth in internal

fluid
α̂ = αcs/ω Non-dimensional attenuation
α̂oc, α̂th Non-dimensional acoustic and thermal attenuation coefficient
βac, βth Acoustic and thermal damping coefficients
βf , βp Coefficients of thermal expansion
γf , γp Specific heat ratios
δκf = (2κf/ω)1/2 Thermal penetration depth for external fluid
δκp = (2κp/ω)1/2 Thermal penetration depth for internal fluid
Θ ′f Dilute-suspension fluid temperature fluctuation in sound wave.
θ′f Temperature fluctuation of disturbance produced by particle.
κf , κp Thermal diffusivities
µ Dynamic viscosity
νf Kinematic viscosity

ξ =
βp/ρp0cpp

βf/ρf0cpf
Property ratio

π′f Pressure disturbance
ρf , ρp Material densities
φ = φ1 + φ2 Velocity potential
φ1, φ2 Potentials
φv Concentration of particles by volume
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